
JavaScript Functions Notes (Modified from: w3schools.com)

A function is a block of code that will be executed when "someone" calls it. In JavaScript, we
can define our own functions, called user-defined functions, or we can use built-in functions
already defined in the JavaScript language.

We have already seen examples of built-in functions, such as:
▪ window.alert()




▪ document.write()




▪ parseInt()


Below, we will show how to define our own user-defined functions.

JavaScript Function Syntax

A function is written as a code block (inside curly { } braces), preceded by the function keyword:

function functionname()
{

some code to be executed
}

The code inside the function will be executed when "someone" calls the function.

The function can be called directly when an event occurs (like when a user clicks a button),
and it can be called from "anywhere" by JavaScript code.

JavaScript is case sensitive. The function keyword must be written in lowercase letters,
and the function must be called with the same capitals as used in the function name.

Place User-Defined Functions in the HEAD Section

JavaScript user-defined functions should be defined in the HEAD section of a HTML document.
The reason for placing JavaScript functions in the HEAD section is the function must be defined
and loaded into memory before the function can be called by JavaScript code or an event
handler.

Example #1 helloAlert()

Below, we define a function named helloAlert() in the HEAD section of the webpage. The
function contains one statement of code, to display a message box.

The function is called later in a SCRIPT element in the BODY section of the webpage.

JavaScript Functions Notes pg 1 of 10

<!DOCTYPE html>
<html>
<head>
<script type="text/javascript">

function helloAlert()

{

alert("Hello World!"); define function helloAlert()

}

</script>
</head>

<body>
<script type="text/javascript">

helloAlert();
<script>

</body>
</html>

Defining Multiple Functions

Multiple JavaScript functions can be defined in the HEAD section of a HTML document.

<html>
<head>
<script type="text/javascript">

function function1()
{

some code
}

function function2() define multiple functions in the

{ HEAD section

some code

}

</script>
</head>

<body>

…

</body>
</html>

JavaScript Functions Notes pg 2 of 10

call function helloAlert()

Calling a Function with Parameters/Arguments

When you call a function, you can pass along some values to it, these values are called
parameters or arguments.

Parameters are the variables we specify when we define the function. When the function
is later called somewhere else in the code, arguments are the values passed as parameters.

You can specify as many parameters as you like, separated by commas (,). The parameters then
serve as variables that can be used inside the function.

Below is the syntax for defining a function that takes three parameters:

function functionName(parameter1 , parameter2 , parameter3)
{

some code to be executed
}

Example #2 welcome()

In the following example, we define a function named welcome() that takes in one parameter,
named user. When the function is called, we pass the argument "John Smith" to the function.

<script>

In the function declaration,

function welcome(user)
 we specify the parameter user

{

alert("Welcome " + user + " to my website!");

}

</script>

 When the function is called,
<script>

 "John Smith" is the argument
welcome("John Smith");

 passed to the function

</script>

The function above will display the message box "Welcome John Smith to my website!" when
the function is called in the webpage.

The function is flexible, you can call the function using different arguments, and
different welcome messages will be given:

<script>

welcome("Sam Davis");

welcome("Alice Johnson");
</script>

JavaScript Functions Notes pg 3 of 10

The examples above will alert "Welcome Sam Davis to my website!" and "Welcome Alice
Johnson to my website!" when the script code is executed.

Functions With a Return Value

Sometimes you want your function to return a value back to where the call was made.

This is possible by using the return statement. When using the return statement, the
function will stop executing, and return the specified value.

Example #3 average()

1 <html><head>
2 <script>
3 function average(num1, num2, num3) {
4 var avg = (num1 + num2 + num3) / 3;
5 return avg;
6 }
7 </script>
8 </head>
9 <body>
10 <script>
11 var x = average(10 , 20 , 60);
12 </script>
13 </body></html>

The average() function above takes three numbers as parameters, and returns the average of
the three numbers. On Line 11, when the average() function is called, the value 30 is returned
and then stored in the variable x.

You can also use the value returned by the average() function without storing it as a variable.

For instance, we could call the function and use the return value in the alert() function:

window.alert(average(5,10,30));

In the statement above, the average() function returns the value 15, which is then displayed in
a message box.

The return statement is also used when you simply want to exit a function. In this case, you do
not have to specify any return value.

JavaScript Functions Notes pg 4 of 10

function myFunction(a , b)
{

if (a > b)
{

return;

}
x=a+b;

}

The function above will exit the function if a > b, and will not calculate the sum of a and b.

Local JavaScript Variables

A variable declared (using var) within a JavaScript function becomes LOCAL and can only be
accessed from within that function. We say the variable has local scope.

In the example below, Line 13 will produce an error, because the variable avg is a local variable
that only exists within the average() function.

1 <html><head>
2 <script>
3 function average(num1, num2, num3) {
4 var avg = (num1 + num2 + num3) / 3;
5 return avg;
6 }
7 </script>
8 </head>
9 <body>
10 <script>
11 var x = average(10 , 20 , 60);
12 document.write("value of x is: " + x);
13 document.write("value of avg is: " + avg);
14 </script>

 </body></html>

You can have local variables with the same name in different functions, because local
variables are only recognized by the function in which they are declared.

Local variables are deleted from memory as soon as the function is completed.

Global JavaScript Variables

Variables declared outside a function, become GLOBAL, and all scripts and functions on the
web page can access it.

JavaScript Functions Notes pg 5 of 10

The Lifetime of JavaScript Variables

The lifetime of a variable is the period of time when the variable is stored in memory
and accessible within a program.

In JavaScript, the lifetime of a variables starts when the variable is declared.

Local variables, or variables declared within a function, are deleted when the function is
completed.

Global variables, variables declared outside of a function, are deleted when you close the page.

Calling JavaScript Functions from Event Handlers

Event handlers are JavaScript code that executes when the user performs some action, or
triggers an event.

Examples of HTML events:
▪ When a user clicks the mouse




▪ When a web page has loaded




▪ When an image has been loaded




▪ When the mouse moves over an element




▪ When an input field is changed




▪ When an HTML form is submitted




▪ When a user strokes a key


Event handlers can be placed within the opening tag of most html elements. In each of
the following examples, we will use event handlers to call built-in and user-defined
JavaScript functions.

The onclick Event

The onclick event is triggered when the user clicks the mouse on a specified element.

Example #1

In the following example, the onclick event is specified for a H1 element.
When the user clicks on the H1 element, the onclick event will be fired.

<html>

<body>

<h1>Test Page</h1>

<h1 onclick="alert('you clicked me …')" >Click on this text!</h1>

</body>

</html>

JavaScript Functions Notes pg 6 of 10

The onload and onunload Events

The onload and onunload events are triggered when the user enters or leaves the page.

The onload event can be used to check the visitor's browser type and browser version, and
load the proper version of the web page based on the information.

The onload and onunload events can also be used to check whether or not the browser has
cookies enabled or disabled.

Example #2

<!DOCTYPE html>

<html>

<head>

<script>

function checkCookies()

{
if (navigator.cookieEnabled == true)

{

alert("Cookies are enabled")

}

else

{

alert("Cookies are not enabled")

}

}
</script>

</head>

<body onload="checkCookies()">

<p>An alert box should tell you if your browser has enabled cookies or not.</p>

</body>

</html>

The onchange Event

The onchange event is often used in combination with validation of input fields.

Below is an example of how to use the onchange event. The upperCase() function will be called
when a user changes the content of an input field.

JavaScript Functions Notes pg 7 of 10

Example #3

<!DOCTYPE html>

<html>

<head>

<script>

function makeUpper()

{
var text = document.getElementById("fname").value; // get the value of the fname input
box

var new_text = text.toUpperCase(); // convert value to uppercase

document.getElementById("fname").value = new_text; // set the value of the fname input
box

}
</script>

</head>

<body>

Enter your name:

<input type="text" id="fname" onchange="makeUpper()" >

<p>When you leave the input field, a function is triggered which transforms the input text to
upper

case.</p>

</body>

</html>

In the example above, the onchange() event is fired when the user changes the contents of
the INPUT element.

The onchange() event calls the makeUpper() function, which retrieves the value of the INPUT
element, converts the value to upper case, then stores the new value in the INPUT element.

In the example above, we use the document.getElementById() method to retrieve a
specific html element based on the element's id. Specifically, we retrieve the element with
the id equal to fname, then obtain the value of that element.

The onmouseover and onmouseout Events

The onmouseover and onmouseout events can be used to trigger a function when the
user mouses over, or out of, an HTML element.

The onmousedown, onmouseup and onclick Events
The onmousedown, onmouseup, and onclick events are all parts of a mouse-click. First
when a mouse-button is clicked, the onmousedown event is triggered, then, when the
mouse-button is released, the onmouseup event is triggered, finally, when the mouse-click
is completed, the onclick event is triggered.

JavaScript Functions Notes pg 8 of 10

Calling JavaScript Function from another function

The code inside a function is not executed when the function is defined. The code inside a
function is executed when the function is invoked. You can invoke a function from
another function. The benefit of calling a function from another function is reusing a
particular function in multiple functions.

Example

You are taking three numbers from user and calculating sum, average of those numbers.
You can write common function AddNumbers() to add three numbers. This function can
be called in CalSum() and CalAvg() functions. We can calculate average from sum in
CalAvg() function.

<!DOCTYPE html>

<html>
<head>

<script>

// Initializing sum and average variables.
var sum = 0;
var avg = 0;

function addNumbers(){
 // Getting number values from user
 var num1 = document.getElementById("number1").value;
 var num2 = document.getElementById("number2").value;
 var num3 = document.getElementById("number3").value;

 // parseInt() is javascript's function to convert string to integer
 sum = parseInt(num1) + parseInt(num2) + parseInt(num3); // Calculate sum
}

function CalSum(){

 // Call addNumbers() function which will calculate the sum
 addNumbers();

 document.getElementById("sum").innerHTML = sum; // Show sum to the user
}

JavaScript Functions Notes pg 9 of 10

function CalAvg(){

 // Call addNumbers function which will calculate sum
 addNumbers();

 avg = sum / 3; // Calculate average

 document.getElementById("avg").innerHTML = avg; // Show average to the user
}

</script>

</head>

<body>
Number 1: <input type="number" id="number1" >

Number 2: <input type="number" id="number2" >

Number 3: <input type="number" id="number3" >

<input type="button" value="Calculate Sum" onclick="CalSum()">
<div id="sum"></div>

<input type="button" value="Calculate Average" onclick="CalAvg()">
<div id="avg"></div>

</body>

JavaScript Functions Notes pg 10 of 10

